Hona hemen, orain arte, ezagutu behar dituzun funtzio eta prozedura estandarrak:
Zenbakiak | ||
Azpiprograma | Deskribapen laburra | Adibidea |
abs | Zenbaki baten balio absolutua lortzeko | gogoratu |
int, frac | Zenbaki erreal baten atalak, emaitza erreala |
gogoratu |
trunc, round | Zenbaki erreal bat zenbaki oso bihurtzeko | |
sqr, sqrt | Zenbaki baten karratua eta erro koadroa | gogoratu |
cos, sin | Funtzio trigonometrikoak, angelua radianetan | gogoratu gogoratu gogoratu |
arcsin, arccos | Funtzio trigonometrikoak, angelua radianetan | |
arctan | Funtzio trigonometrikoa, angelua radianetan | |
ln, exp | Logaritmo nepertarraren funtzioa eta bere berreketaren funtzioa (edozein oinarriko logaritmoa eta berreketa) |
gogoratu |
random | Zenbaki sasi-aleatorio bat lortzeko funtzioa |
gogoratu gogoratu |
randomize | Zenbaki aleatorioen hasiera finkatzeko prozedura |
Hona hemen adibide batzuk:
ZENBAKIEKIN LAN EGITEKO AZPIPROGRAMA BATZUK: Funtzio batek sarreraren bat hartzen du eta emaitza bakar itzultzen du. Dagoeneko funtzio estandar hauek erabili ditut:
|
Zerrenda honetan azpiprograma estandar batzuk deskribatzen dira:
FUNCTION ABS ( Zenbakia : Integer | Real ) : Integer | Real ; FUNCTION SQR ( Zenbakia : Integer | Real ) : Integer | Real ; FUNCTION SQRT ( Zenbakia : Integer | Real ) : Real ; FUNCTION EXP ( Zenbakia : Real ) : Real ; FUNCTION LN ( Zenbakia : Real ) : Real ; FUNCTION SIN ( Angelua : Real ) : Real ; FUNCTION COS ( Angelua : Real ) : Real ; FUNCTION ARCSIN ( Zenbakia : Real ) : Real ; FUNCTION ARCCOS ( Zenbakia : Real ) : Real ; FUNCTION ARCTAN ( Tangentea : Real ) : Real ; FUNCTION ROUND ( Zenbakia : Real ) : Integer ; FUNCTION TRUNC ( Zenbakia : Real ) : Integer ; FUNCTION FRAC ( Zenbakia : Real ) : Real ; FUNCTION INT ( Zenbakia : Real ) : Real ; FUNCTION RANDOM ( Zenbakia : Integer ) : Integer ; FUNCTION RANDOM : Real ; PROCEDURE RANDOMIZE ;
ESKATZEN DEN PROGRAMA (I)
Randomize eta Random(parametroa)
Dado bat 3 aldiz jaurti dela simulatuko dugu. Dadoak 6 posibilitate ditu: 1,
2, 3, 4, 5 eta 6. Gure programak 3 jaurtiketa aleatorien emaitzak
batuko ditu eta baturaren arabera mezu hau pantailaratuko du:
- 3 jaurtiketen baturak 15 edo gehiago balio badu, pantailaraketa Oso ondo izango da
- 3 jaurtiketen batura 11 eta 14 artekoa bada, pantailaraketa Nahiko ondo izango da
- 3 jaurtiketen batura 6 eta 10 artekoa bada, pantailaraketa Txarto izango da
- 3 jaurtiketen baturak 5 edo gutxiago balio badu, pantailaraketa Oso txarto izango da
ESKATZEN DEN PROGRAMA (II)
Randomize eta Random
Zenbaki errealekin lan eginez, balio aleatorioak lortzen dituen programa
idatziko dugu.
Auto baten abiadura adierazten duen zenbaki erreal bat
aleatorioki lortuko da, baina zenbaki aleatorio horren balioa bi
mugen artekoa izan beharko da: behemuga 27.8 km/h eta goimuga 104.5 km/h.
Auto horren denbora adierazten duen zenbaki erreal bat
aleatorioki lortuko da, eta bigarren zenbaki aleatorio horren balioa bi
mugen artekoa izan beharko da ere: behemuga 0.8 segundo eta goimuga 2.0 segundo.
Eskatzen den programaren exekuzio-adibide bat jarraian erakusten da:
ESKATZEN DEN PROGRAMA (III)
Ln eta Exp
5.2X=7.9 bezalako ekuazio esponentziala ebazteko logaritmoa erabil behar da, hots, logaritmo nepertarra kalkulatzen duen ln funtzio estandarra. Modu beretsuan, e3.4=X bezalako ekuazioak ebazteko exp funtzio estandarra aplika dezakegu.
Eskatzen den programaren exekuzio-adibide bat ikusi:
|
|
ESKATZEN DEN PROGRAMA (IV)
Ln eta beste oinarriko logaritmoak
Zenbaki errealekin lan eginez, balio positibo bat teklatuz irakurri eta programak zenbakiaren logaritmo hamartarra kalkula dezala. Logaritmo hamatarra edo bitarra eskuratzeko funtzio estandarrik ez dagoenez, logaritmo nepertarraren funtzioa aplikatu beharko da formula hauen arabera:
ESKATZEN DEN PROGRAMA (V)
Exp eta beste oinarriko potentziak
Zenbaki errealekin lan eginez, balio positibo edo negatibo bat teklatuz irakurri eta programak zenbakiaren 10-eko potentzia kalkula dezala. Horrelako lana burutzeko funtzio estandarrik ez dagoenez, logaritmo nepertarraren funzioa eta e zenbakiari dagokion potentziaren funtzioa aplikatu beharko dira esleipen hau eginez:
Goiko esleipenaren justifikazioa jarraian ematen da:
Z datua den zenbaki erreala X lortu nahi den potentzia X = 10^Z logaritmo hamartarrrak hartuz: log(X) = log(10^Z) ---> log(X) = Z·log(10) log(X) = Z·log(10) ---> log(X) = Z·1 ln(X)/Ln(10) = Z·1 ---> ln(X) = Z·ln(10) ln(X) = Z·ln(10) exp funtzioa aplikatuz: ln(X) = Z·ln(10) exp(ln(X)) = exp(Z·ln(10)) X = exp(Z·ln(10))
ESKATZEN DEN PROGRAMA (VI)
ArcSin eta ArcCos
Zenbaki errealekin lan eginez, angelu baten sinua adierazten duen balio bat teklatuz irakurri (-1.0 eta +1.0 arteko balioa) eta programak angelua lortuko du radianetan:
Gauza bera egin daiteke datua angeluaren kosinua baldin bada arccos funtzioa aplikatuz. Edozein kasutan, arcsin eta arccos funtzio estandarrak erabil ahal izateko math unitatea kargatu beharko da (arctan funtzioak ez du math unitearen beharrik).
Hemen arcsin funtzioaren grafikoa (irudiaren gainean klik egin balioak emateko):
Hauxe izan daiteke eskatzen den programaren irteera:
|
iruzkinik ez:
Argitaratu iruzkina
Iruzkinen bat idazteko Google-ko kontu bat behar duzu. Iruzkin guztien moderazio-ardura blogeko administratzaileari dagokio.